

- 1 Long-term trends in pH in Japanese coastal waters
- $\mathbf{2}$
- 3 Miho Ishizu¹, Yasumasa Miyazawa¹, Tomohiko Tsunoda², Tsuneo Ono³
- 4
- 5 ¹E-mail: <u>mishizu@jamstec.go.jp</u>
- 6 ¹E-mail: miyazawa@jamstec.go.jp
- 7 Japan Agency for Marine-Earth Science and Technology, Environmental Variability Prediction and
- 8 Application Research Group, Yokohama Institute for Earth Sciences, 3173-25 Showa-machi,
- 9 Kanagawa-ku, Yokohama 236-0001, Japan
- 10 Tel: +81-45-778-5875
- 11 Fax: +81-45-778-5497
- 12
- 13 ²E-mail: <u>t-tsunoda@spf.or.jp</u>
- 14 The Ocean Policy Research Institute of the Sasakawa Peace Foundation, 1-15-16, Toranomon Minato-
- 15 ku, Tokyo 105-8524, Japan
- 16
- 17 ³E-mail: <u>tono @affrc.go.jp</u>
- 18 Japan Fisheries Research Education Agency, 15F Queen's Tower B, 2-3-3 Minato Mirai, Nishi-ku,
- 19 Yokohama, Kanagawa 220-6115, Japan
- 20
- 21 Abstract
- 22 In recent decades, acidification of the open ocean has shown consistent increases. However,
- analysis of long-term data in coastal waters shows that the pH is highly variable because of coastal

24	processes and anthropogenic carbon inputs. It is therefore important to understand how anthropogenic
25	carbon inputs and other natural or anthropogenic factors influence the temporal trends in pH in coastal
26	waters. Using water quality data collected at 1481 monitoring sites as part of the Water Pollution
27	Control Program, we determined the long-term trends in pH in Japanese coastal waters at ambient
28	temperature from 1978 to 2009. We found that pH decreased (i.e., acidification) at between 70% and
29	75% of the sites and increased (i.e., basification) at between 25% and 30% of the sites. The rate of
30	decrease varied seasonally and was, on average, -0.0014 yr^{-1} in summer and -0.0024 yr^{-1} in winter,
31	but with relatively large deviations from these average values. While the overall trends reflect
32	acidification, watershed processes might also have contributed to the large variations in pH in coastal
33	waters. The seasonal variation in the average pH trends reflects variability in warming trends, while
34	regional differences in pH trends are partly related to heterotrophic water processes induced by nutrient
35	loadings.
36	
37	Keywords: Ocean acidification, Coastal acidification/basification, pH, Data analysis,
38	CO ₂
39	
40	1. Introduction

41 The effect of ocean acidification on several marine organisms, including calcifiers, is widely acknowledged and is the topic of various marine research projects worldwide. Chemical variables 42

43	related to carbonate cycles are monitored in several ongoing ocean projects to determine whether the
44	rate of ocean acidification can be identified from changes in pH and other variables in the open ocean
45	(Gonzalez-Davila et al. 2007; Dore et al. 2009; Bates 2007; Bates et al. 2014; Midorikawa et al. 2010;
46	Olafsson et al. 2009; Wakita et al. 2017). Analysis of pH data measured <i>in situ</i> at the European Station
47	in the Canary Islands (ESTOC) in the North Atlantic from 1995 to 2003 and normalized to 25°C
48	showed that pH_{25} decreased at a rate of 0.0017 \pm 0.0005 yr ⁻¹ (Gonzalez-Davila et al. 2007). Similarly,
49	analysis of the Hawaii Ocean Time-series (HOT) (Dore et al. 2009) and the Bermuda Atlantic Time
50	Series (BATS) (Bates 2007) showed that pH at ambient sea surface temperature (pH_{insitu}) decreased by
51	0.0019 ± 0.0002 and 0.0017 ± 0.0001 yr ⁻¹ from 1988 to 2007 and from 1983 to 2005, respectively.
52	Analysis of data collected along the hydrographic observation line at 137°E in the western North
53	Pacific by the Japanese Meteorological Agency (JMA) showed that pH_{25} decreased by 0.0013±0.0005
54	yr^{-1} in summer and 0.0018±0.0002 yr^{-1} in winter from 1983 to 2007 (Midorikawa et al. 2010). The
55	winter pH_{insitu} in surface water in the Nordic Seas decreased at a rate of 0.0024±0.0002 yr ⁻¹ from 1985
56	to 2008 (Olafsson et al. 2009). This rate was somewhat more rapid than the average annual rates
57	calculated for the other subtropical time-series stations in the Atlantic Ocean, BATS, and ESTOC, and
58	was attributed to the air-sea CO ₂ flux and buffering capacity (higher Revell factor) (Olafsson et al.
59	2009), which were higher and lower than those in subtropical regions, respectively. Wakita et al. (2017)
60	estimated that the annual and winter pH_{insitu} at station K2 in the subarctic western North Pacific
61	decreased at rates of 0.0025 and 0.0008 yr^{-1} , respectively, from 1999 to 2015. The lower rate in winter

- 62 was explained by increases in dissolved inorganic carbon (DIC) and total alkalinity (Alk) that resulted
- 63 from climate-related variations in ocean currents.
- These long-term time-series from various sites in the open ocean indicate consistent changes in surface ocean carbon chemistry, which mainly reflect the uptake of anthropogenic CO₂, with consequences for ocean acidity. Coastal waters, however, differ from the open ocean as they are subjected to multiple influences, such as hydrological processes, land use in watersheds, nutrient inputs (Duarte et al. 2013), changes in the structure of ecosystems caused by eutrophication (Borges and Gypens 2010; Cai et al. 2011), marine pollution (Zeng et al. 2015), and variations in salinity (Sunda and Cai 2012).

71Duarte et al. (2013) hypothesized that anthropogenic pressures would cause the pH_{insitu} of coastal 72waters to decrease (acidification) or increase (basification), depending on the balance between the atmospheric CO₂ inputs and watershed exports of alkaline compounds, organic matter, and nutrients. 73 74For example, in Chesapeake Bay, trends in pHinsitu have shown temporal variations over the last 60 years, presumably because of the combined influence of increases and decreases in pHinsitu in the 75mesohaline and polyhaline regions of the mainstem of the bay, respectively (Waldbusser et al. 2011; 7677Duarte et al. 2013). The pH_{insitu} in Tampa Bay increased consistently until 1980 but then dropped almost instantly, only to gradually increase again (Duarte et al. 2013). The increases in pH_{insitu} until 78 791980 coincided with rapid increases in the population of the Tampa Bay watershed. In this period, 80 nutrients were not stripped from wastewater (Greening and Janicki 2006). However, a nutrient

81	management plan was implemented in 1980, and wastewater nutrient-removal was initiated. The sharp
82	decrease in pH_{insitu} throughout the bay at this time might have been related to the decrease in primary
83	production triggered by the reduction in nutrients. In the period after 1980, pH_{insitu} might have
84	increased again because of the expansion of seagrasses, improvements in water quality, and enhanced
85	CO ₂ uptake (Duarte et al. 2013).
86	These processes that occur only in coastal regions might cause increases or decreases in the rate of
87	acidification, meaning that the outcomes for coastal ecosystems in different regions will vary. At
88	present we have limited information about long-term changes in pH in coastal waters, mainly because
89	of the difficulty involved in collecting continuous long-term data from coastal waters around an entire
90	country at a spatial resolution that is sufficient to cover the high regional variability in coastal pH.
91	The Water Pollution Control Law (WPCL) was established in 1970 to deal with the serious
92	pollution of the Japanese aquatic environment in the 1950s and 1960s. Several environmental variables,
93	including pH_{insitu} , have been continuously measured in coastal waters since 1978, using consistent
94	methods enacted in the monitoring program, to help protect coastal water and groundwater from
95	pollution and retain the integrity of water environments. The errors in pH measurements collected in
96	this program were assessed as outlined in the JIS Z8802 (JIS; Japanese Industrial Standard) standard
97	protocol (2011) that corresponds to the ISO 10523 (ISO; International Organization for
98	Standardization) standard protocol. Compared with the specialized oceanographic protocols described
99	in the United States Department of Energy (DOE) Handbook (1994), it is not difficult to achieve the

100	JIS protocol. The JIS and DOE standard protocols allow measurement errors of less than ± 0.07 and
101	± 0.003 , respectively, for the glass electrode method, and the DOE protocol demands a precision of
102	± 0.001 for the spectrophotometric method. Measurements are generally made with the higher-quality
103	spectrophotometric method during major oceanographic studies (e.g. Midorikawa et al. 2010). The
104	coastal monitoring program in Japan comprises more than 2000 monitoring sites that cover most parts
105	of the coastline (Fig. 1), so the dataset provides the opportunity to estimate the overall trend in pH in
106	Japanese coastal areas and the regional variability in the trends from data with a known precision.
107	In the present study, we examined the pH _{insitu} trends in surface coastal waters from data measured
108	as part of WPCL monitoring programs. We then examined the trends at specific locations. The
109	remainder of this manuscript is organized as follows. The data and methods are described in Section
110	2, and trends in $p\mathrm{H}_{\text{insitu}}$ are presented in Section 3. The results are discussed in Section 4 and the
111	concluding remarks are provided in Section 5.
112	
113	2. Materials and Methods

114 2.1 Water Pollution Control Law (WPCL) monitoring data

Data for several environmental variables, including pH_{insitu}, and the associated metadata, are available on the website of the National Institute for Environmental Studies (<u>www.nies.go.jp/igreen;</u> <u>http://www.nies.go.jp/igreen/md_down.html</u>). We downloaded data for pH from 1978 to 2009 for the trend analysis. We also downloaded temperature (T) and total nitrogen (TN) data that were measured

119	at the same sites as the pH data for the same time period (data for T and TN were available from 1981
120	and 1995, respectively), to check the quality of the pH _{insitu} data (Section 2.2), and to discuss coastal
121	processes that influenced the pH_{insitu} (Section 4.2).
122	The data were collected by the Regional Development Bureau of the Ministry of Land,
123	Infrastructure, Transport and Tourism, and the Ministry of the Environment under the WPCL
124	monitoring program. Monitoring protocols (sampling frequencies, locations, and methods) are outlined
125	in the program guidelines (NIES 2018; MOE 2018) written in Japanese, and here we summarize that
126	protocols.
127	Monitoring operations are occupied at 1481 sites along the Japan coast shown in Figure 1a. In
128	each monitoring sites, basic surveys were held 4 to 40 times a year dependent to the site. Information
129	on the sampling frequency at the monitoring sites is presented in Table 1. At each basic survey, water
130	samples were collected at several depths (0.5 and 2.0 m below the surface for all sites, and 10 m where
131	bottom depth was more than this) four times a day to cover diurnal variation. At sites where large
132	variation is found in the daily pH data, additional one day water sampling at 2-hourly intervals (ca. 13
133	times a day) was made at least twice a year to check the adequacy of basic water sampling protocol.
134	Measurements of pH for each water sample were made following the Japanese Industrial
135	Standard protocol JIS Z 8802 (2011), which is equivalent to ISO10523
136	(https://www.iso.org/standard/51994.html). Namely, pH was measured by glass electrode calibrated
137	by NBS standard buffers. Permitted repeatability in each measurement was ± 0.07 . NIES gathered all

138	pH data measured at each site and calculated annual minimum and maximum pH.
139	The published WPCL pH dataset only contains these annual minimum and maximum pH data,
140	reported on the NBS pH scale (pH_{insitu}) and rounded to one decimal place. Water temperature data are
141	also available for each sampling event (http://www.nies.go.jp/igreen/md_down.html). Previous studies
142	have reported negative correlations between seasonal variations in pH and water temperature, mainly
143	because of changes in the dissociation constant; the pH values were lowest in summer and highest in
144	winter, in both the open ocean (e.g. Bates et al. 2014) and coastal waters (e.g., Frankignoulle and
145	Bouquegneau 1990; Byrne et al. 2013; Hagens et al. 2015; Challener at al. 2016). We therefore
146	assumed that the minimum and maximum pH data coincided with the highest and lowest temperatures,
147	respectively (Fig. 2), and we used these data to calculate pH_{25} in Section 4.2.
148	The monitoring operations were carried out by licensed operators as outlined in the annual plan of
149	the Regional Development Bureau of each prefecture. These specific licensed operators were retained
150	for the duration of the measurement period, which means that the same laboratories were always in
151	charge of collecting the data. This approach helps to prevent systematic errors that might arise both
152	between measurement facilities and over time, and ensures the datasets are accurate.
153	
154	2.2 Quality control procedures and assessing the consistency of the WPCL monitoring data
155	We used all the data for fixed sites that had continuous time-series from 1978 to 2009. There were
156	2463 regular and non-regular monitoring sites in 1978 and 2127 sites in 2009. While there were few

157 sites in some prefectures in Hokkaido and Tohoku, the monitoring sites covered almost all the coastline

159 As explained in more detail later in this section, we applied a three-step quality control procedure.

- 160 We excluded 1) discontinuous time sequences, 2) time sequences that had extreme outliers in each year,
- and 3) time sequences that included significant random errors and which were only weakly correlated
- 162 with time sequences at adjacent sites.

163When we excluded the sites that had discontinuous time sequences of pH_{insitu} from 1978 to 2009, 1641481 sites remained (Fig. 1). We then excluded time sequences with outliers, defined as sites with data 165points that were more than three standard deviations from the mean for each year. After this step, 1127 166sites remained (not shown). We calculated the trends in the unbroken continuous time sequences of the 167 minimum and maximum pHinsitu data at each site with linear regression (Fig. 3), and the slopes of the 168linear regression were taken as the minimum and maximum pHinsitu trends (e.g. Fig. 3). The linear regression trends might have been influenced by random errors or variations at different temporal 169scales in the data for each site. To eliminate the influence of these errors and variations as far as possible, 170we removed the data that had significant random errors, defined as the time sequences for which the 171172standard deviations of pHinsitu exceeded the average standard deviation of the pHinsitu time sequences at the 1127 sites. After this step, 302 sites remained (see Fig. 1b for site locations). As shown in Table 1731742, the correlations between temperature and pHinsitu at sites that were within 15 km of each other 175strengthened after steps 2 and 3, which suggests that the reliability of the dataset improved at each step

¹⁵⁸ in Japan (Fig. 1).

186

176	of the quality control. The mutual correlations among the pH_{insitu} and temperature measurements at
177	adjacent sites (Table 2), and the correlations between pH_{insitu} and TN (Table 3) show that the quality
178	control procedures were effective.
179	For the 302 sites, we calculated the correlations between water temperature (Fig. 4a–b) and pH_{insitu}
180	(Fig. 4c-d) between pairs of adjacent sites (Fig. 4). At most of the stations, the correlations between
181	the temperatures at the site pairs were relatively strong, which indicates that the temperature followed

182 similar patterns over time at adjacent sites (Fig. 4a–b). The correlations tended to be strong when the

183 sites were close together, but gradually weakened with increasing distance between sites. The patterns

184 in the pH_{insitu} and temperature correlations were similar (Fig. 4c-d), which indicates that the pH_{insitu}

185 and temperature data at adjacent monitoring sites varied in the same way. In other words, the relative

ratios of the measurement errors in pH_{insitu} and the natural spatio-temporal variations at these

187 monitoring sites were similar to those for temperature. The absolute values of the pH_{insitu} correlation

188 coefficients were slightly lower than those for temperature for each corresponding pair of sites (Figs.

4 and 5), and might reflect the fact that pH_{insitu}, but not the water temperature, is subjected to strong forcing by coastal biological processes, which causes short-term variations in pH_{insitu}. The correlations between the minimum pH_{insitu} data were weaker than those for the maximum pH_{insitu} data because the degree of biological forcing varied by season and was stronger in summer when pH_{insitu} was at a minimum and weaker in the winter when pH_{insitu} was at a maximum. Despite the influence of biological

194 processes on pH_{insitu}, the correlation coefficients remained high and were significant (r=0.367, p<0.05)

195	at most of the monitoring sites, especially at sites that were less than 5 km apart within the same
196	prefecture; at such sites, pH_{insitu} followed similar patterns. In the final step of the quality check
197	procedure (step 3), we removed all the time sequences with weak and insignificant correlations for
198	temperature and pH_{insitu} (Figs. 4 and 5). After this final step, 289 sites remained.
199	The monitoring in each prefecture is carried out by different licensed operators, decided by the
200	Regional Development Bureau in each prefecture. Even though all the operators follow the same JIS
201	protocol, manual monitoring can introduce systematic errors into the data. Some adjacent monitoring
202	sites are close to each other but are managed by different operators, such as sites close to the boundaries
203	between Osaka and Hyogo, Hyogo and Okayama (Fig. 6), Kagawa and Okayama (not shown), and
204	Kagawa and Ehime (not shown). The pH_{insitu} time sequences for these site pairs were generally similar,
205	even though there were some deviations when compared with the time sequences for adjacent sites
206	within the same prefecture, monitored by the same operator (lines of the same color in Fig. 6). The
207	standard deviations of the pH_{insitu} trends between these site pairs close to the boundaries of Osaka and
208	Hyogo, Hyogo and Okayama, Kagawa and Okayama, and Kagawa and Ehime were 0.0014, 0.0012,
209	0.0026, and 0.0017 yr^{-1} , respectively, and were smaller than the acceptable measurement errors of the
210	JIS standard protocols. We can therefore say that the measurements from the different operators in
211	different prefectures were consistent.

212

213 3. Results

214 3.1 Variations in pH_{insitu} highlighted by regression analysis

215	The histograms of the calculated pH_{insitu} trends (yr ⁻¹), for the minimum and maximum pH_{insitu} after
216	each quality control step, are shown in Fig. 7. The histogram in Fig. 7a-b shows data of the 1481 sites
217	(discontinuous sites excluded). The data for 1127 sites (i.e., data without outliers from step 2) are
218	shown in Fig. 7c–d, and the data for 289 sites (from step 3) are shown in Fig. 7e–f (Section 2.2). The
219	number of sites decreased at each step of the quality control, but the shapes of the histograms were
220	generally similar for both the minimum and maximum pH trends. The total trends showed overall
221	normal distributions with a negative shift for all the processing level.
222	We detected both positive (basification) and negative (acidification) trends, which contrasts with
223	the findings of other researchers who reported only negative trends (ocean acidification) in the open
224	ocean (Bates et al. 2014; Midorikawa et al. 2010; Olafsson et al. 2009; Wakita et al. 2017). The average
225	(± standard deviation) trends for the minimum and maximum pH_{insitu} data were –0.0002±0.0061 and
226	-0.0023 ± 0.0043 yr ⁻¹ for the 1481 sites (Fig. 7a–b), and -0.0005 ± 0.0042 and -0.0023 ± 0.0036 yr ⁻¹ for
227	the 1127 sites (Fig. 7c–d), respectively. The average trends for the minimum and maximum $p\mathrm{H}_{\text{insitu}}$
228	data for the 289 sites that remained after step 3 were -0.0014 ± 0.0033 and -0.0024 ± 0.0042 yr ⁻¹ ,
229	respectively (Fig. 7e-f).

The negative trends were relatively weak for the minimum pH_{insitu} data and relatively strong for the maximum pH_{insitu} data, but there was an overall tendency towards acidification. The trends that we detected for all the processing levels (Fig. 7) are consistent with, and within the errors of, those reported

233	by Midorikawa et al. (2010), who calculated that pH_{25} decreased at rates of 0.0013 $\pm 0.0005 \ yr^{-1}$ and
234	$0.0018\pm0.0002 \text{ yr}^{-1}$ in summer and winter from 1983 to 2007 along the 137°E line of longitude in the
235	north Pacific.
236	At the 289 sites, there were 204 negative and 86 positive trends for the minimum pH_{insitu} data and
237	217 and 72 negative and positive trends for the maximum $p\mathrm{H}_{\text{insitu}}$ data. This shows that for the
238	minimum data, there were acidification and basification trends at 70% and 30% of the monitoring sites,
239	respectively, with values of 75% and 25% for the maximum data, respectively.
240	
241	3.2 Local patterns in acidification and basification
242	We examined the pH_{insitu} trends for the 289 sites for local patterns in acidification and basification
243	(Section 2.2), and found that the trends seemed to be randomly distributed. For example, the values
244	were different at sites that were less than 50 km apart (Fig. 8). There are many monitoring sites in the
245	Seto Inland Sea and in Western Kyushu. The trends for the minimum and maximum $p\mathrm{H}_{\text{insitu}}$ showed
246	both acidification and basification in the Seto Inland Sea (Fig. 8a-b, 8c-d). In the western part of
247	Kyushu, acidification dominated (Fig. 8a-b, 8c-d) and there were few clusters of basification in
248	pH_{insitu} for both the minimum and maximum pH_{insitu} data (Fig. 8b, d). Figure 8a (b) and Figure 8c (d)
249	are similar, which suggests that, at most of the sites where we detected acidification and basification,
250	the trend directions were consistent for the minimum and maximum pH _{insitu} (Fig. 8a-b, 8c-d).
251	By examining the average minimum and maximum pH_{insitu} trends in each prefecture (Fig. 9a-b, d-e,

252	g-h, j-k), we found that, while the average values were slightly different, the trends in the averaged
253	values and the patterns in acidification and basification for both the minimum and maximum $\ensuremath{pH_{insitu}}$
254	were the same from north to south and from west to east. We also found acidification trends in most of
255	the prefectures with at least 17 sampling sites, namely Miyagi, Wakayama, Hyogo, Okayama,
256	Yamaguchi, Tokushima, Kagawa, Ehime, and Nagasaki (Figs. 1a and 9c, f, i, l). The average estimates
257	for the maximum pH_{insitu} were larger than those for the minimum pH_{insitu} in these prefectures.
258	We found more acidification trends for the minimum pH_{insitu} in the southwestern prefectures of
259	Yamaguchi, Kagawa, Ehime, Hyogo, and Nagasaki than in the northeastern prefecture of Miyagi (Fig.
260	9a, d, g, i) (see Fig. 1 for locations). The maximum and minimum pH _{insitu} trends indicated basification
261	in Wakayama and Okayama prefectures (Fig. 9c). The trends in Osaka, Hyogo, Okayama, Hiroshima,
262	Yamaguchi, Kagawa, and Ehime prefectures (Fig. 1a) were different from each other, even though they
263	were all located in the same part of the Seto Inland Sea (Fig. 9d-e). The trends in Hiroshima and
264	Okayama, within the Seto Inland Sea, were weaker than those in Hyogo, Yamaguchi, Kagawa, and
265	Ehime, which were outside the sea (Fig. 9d–e). The pH_{insitu} trend values indicated relatively strong
266	acidification at -0.0025 yr ⁻¹ in Niigata in the Japan Sea (Fig. 9j–1) but there were fewer than the
267	threshold of 17 monitoring sites in the prefectures.
268	

268

269 4. Discussion

270 4.1 Statistical evaluation of our estimated overall trends

271	The JIS Z8802 (2011) allows a measurement error of ± 0.07 and this treatment further enhanced the
272	uncertainty of the published data to ± 0.1 . The uncertainty of the slope of the linear regression line (σ_β)
273	is estimated by the following equation (e.g., Luenberger 1969):
274	$\sigma_{\beta} = \{\sigma_{y}^{2} / \Sigma(x_{i} - [x])^{2}\}^{1/2} $ (1)
275	where σ_y^2 is theoretical variance in a pH value caused by the measurement error (in this case, $0.1^2 =$
276	0.01); and x_i and $[x]$ represent the year and the year averaged for all data at a station, respectively. In
277	the WPCL dataset, there are generally 32 data points for each station (for every year from 1978 to
278	2009), spaced at consistent intervals. In this case, $\Sigma(x_i - [x])^2$ becomes 2728 and σ_β becomes 0.0020
279	yr ⁻¹ , which is the threshold of significance for the pH trend. This means that our estimated trends
280	included standard deviations that were less than 0.0020 yr ⁻¹ , and, if there were no trends, a histogram
281	of pH trends should have a normal distribution with an average and standard deviation (σ_β) of 0.0000
282	and 0.0020 yr ⁻¹ , respectively (Fig. 7). The average trend in the maximum pH_{insitu} , however, shifted
283	from zero in a negative direction at a rate of more than 0.0023 yr^{-1} for all three scenarios. This result
284	implies that averaged over the whole country, the Japanese coast was acidified in winter to a degree
285	that could be detected from the historical WPCL pH data, even with an uncertainty of ± 0.1 . The
286	observed standard deviation for the maximum pH_{insitu} was also larger than the expected value of 0.0020
287	yr^{-1} because of local variations in the pH trends. The average shift in the minimum pH _{insitu} data was
288	smaller than 0.0020 yr^{-1} , but all three scenarios showed negative shifts in the average minimum pH_{insitu}
289	value (Fig. 7a, c, e).

290	We used Welch's t test to assess the direction of the average minimum and maximum $p\mathrm{H}_{\text{insitu}}$ trends.
291	For our null hypothesis, we assumed that the population of the trends with an average of -0.0014 yr^{-1}
292	$(-0.0024 \text{ yr}^{-1})$ and a standard deviation of 0.0033 yr^{-1} (0.0042 yr^{-1}) was sampled from a population
293	with an average trend of 0.0000 yr^{-1} and a standard deviation of 0.0020 yr^{-1} . When the sample size
294	was 289, the <i>t</i> -values and the degrees of freedom were 8.7 (6.2) and 412.2 (474.4), respectively. Since
295	the p value was less than 0.001, the null hypothesis was rejected. Welch's t test confirmed that the
296	average trends for both the minimum and maximum pH_{insitu} data were negative.
297	
298	4.2 Possible influences on the pH_{insitu} trends in coastal waters
299	To facilitate our discussion of the factors that influenced the pH_{insitu} trends, we used the conceptual
300	models of acidification and basification in coastal waters of Sunda and Cai (2012) and Duarte et al.
301	(2013), as follows:
302	$PH_{insitu} = Function (D (T), DIC (Air CO2, B (T, N)), Alk(S)) $ (2)
303	The pH_{insitu} varies with the ambient temperature (T) on seasonal, inter-annual, and decadal time scales
304	mainly because of changes in the water dissociation constant (D). Changes in dissolved inorganic
305	carbon (DIC), alkalinity (Alk), and salinity (S) also affect the pH _{insitu} trends. The solubility pump,
306	which is controlled mainly by the atmospheric CO ₂ concentration (Air CO ₂), affects DIC, and ocean
307	acidification occurs when the Air CO ₂ increases. Dissolved organic carbon can also be affected by
308	biological processes (B) that depend on the ambient temperature (T) and the nutrient loading (N).

309	There are contrasting relationships between DIC and N in heterotrophic and autotrophic oceans.
310	Because of the balance between primary productivity and respiration in heterotrophic (autotrophic)
311	oceans, the DIC increases as N increases (decreases), causing acidification, but decreases as N
312	decreases (increases), causing basification. Alkalinity (Alk) generally varies with salinity (S) in coastal
313	oceans and might also affect the pH _{insitu} trend.
314	The DIC process (Air CO ₂) of ocean acidification in equation 2 generally occurred at all monitoring
315	sites when the Air CO ₂ concentrations were horizontally uniform, resulting in overall negative trends
316	in minimum and maximum $pH_{\text{insitu}}.$ D (T) also has an overall trend of warming in Japan coastal area,
317	and hence made some affections to the observed $\ensuremath{pH_{insitu}}$ trend. We will discuss about this effect in
318	the next chapter.
319	On the other hand, both DIC (B (T, N)) and Alk (S) are difficult to have general trends that covered
320	all monitoring sites, because factors that control these variables (e.g., salinity of coastal water and
321	terrestrial nutrient loading) have no mutual trends all over the Japan coast. WPCL data contains stations
322	of both autotrophic and heterotrophic oceans, and this condition further obscure affection of DIC (B
323	(T, N) to overall pH _{insitu} trend, as the same trend of B (T, N) leads opposite trends of DIC $(B (T, N)$
324	between autotrophic and heterotrophic ocean. Wide-varying nature of D(T), DIC (B (T, N)), and
325	Alk(S) depending on the season and region, however, might have caused the seasonal/regional
326	differences of pH _{insitu} trends among stations, contributing relatively large standard deviations of both
327	the minimum and maximum pH _{insitu} trends (Figures 7).

328

329	4.2.1 Seasonal variations in pH _{insitu} trends
330	Our estimates of the average pH_{insitu} trends show that there was a difference of 0.0010–0.0020 yr^{-1}
331	between the winter and summer trends (Section 3.1, Fig. 7e-f). Our analysis was based on the pH _{insitu}
332	data, so the difference between the trends might reflect long-term changes in water temperature that
333	affected the dissociation constant (process D in equation 2) or changes in the coastal carbon cycle
334	(including absorption of anthropogenic carbon by the solubility pump, represented by DIC in equation
335	2).
336	To evaluate the direct thermal effects related to process D in equation 2, we estimated the pH values
337	normalized to 25°C (pH ₂₅), assuming that the minimum (maximum) pH_{insitu} and highest (lowest)
338	temperature and other parameters were measured at the same time. By assuming the other parameters
339	that affected the pH calculation in the CO2sys software (Lewis and Wallace 1998, csys.m), such as
340	salinity, DIC, and alkalinity, did not change (these parameters are not measured as part of the WPCL
341	program), we used the method of Lui and Chen (2017) to calculate the pH_{25} , as follows:
342	$pH_{25} = -pH_{insitu} + a_1(T - 25^{\circ}C),$ (3)
343	where a_1 is set to -0.015 and T is the observed temperature.
344	The distributions of the trends in pH_{25} after applying equation 3 are shown in Fig. 10. The minimum
345	and maximum $p\mathrm{H}_{25}$ data were normally distributed, meaning that the distributions of the $p\mathrm{H}_{insitu}$ trends
346	were maintained after applying equation 3 (Fig. 7e, f). The averages (\pm standard deviations) of the

347	minimum and maximum pH_{25} trends were -0.0010 ± 0.0032 and -0.0014 ± 0.0041 yr ⁻¹ , respectively, so
348	the average for the minimum and maximum pH25 still showed acidification, but the trends were slightly
349	weaker than those for the minimum and maximum pH_{insitu} (-0.001 yr ⁻¹ less) (Fig. 7e-f).
350	The pH_{25} and pH_{insitu} trends from north to south and from west to east were similar among the
351	prefectures (Fig. 11), except in Miyagi and Tokushima. The trends in the minimum pH _{insitu} and summer
352	pH_{25} were quite similar, but the minimum and maximum pH_{insitu} trends tended to be more negative (by
353	about -0.0010 yr^{-1}) than the corresponding pH ₂₅ trends, especially in Wakayama, Hiroshioma, Kagawa,
354	and Ehime, which met the threshold number of sampling sites.
355	The average highest temperatures observed at the minimum pH_{insitu} were close to 25°C in the regions
356	south of Chiba prefecture (Figs. 1 and 12a-d), so we were not able to remove the thermal effects from
357	the minimum $p\mathrm{H}_{25}$ in the southern prefectures. In contrast, the maximum $p\mathrm{H}_{insitu}$ values were observed
358	at temperatures that were more than 10°C lower than 25°C, so we were able to normalize the winter
359	data. We estimated the temperature trends from the highest and lowest temperatures at the 289 sites
360	that remained after quality control step 3. The trends in the highest and lowest temperatures generally
361	indicated warming, with an average and standard deviation of 0.021 ± 0.040 and 0.047 ± 0.036 °C yr ⁻¹ ,
362	respectively (Fig. 13). Estimations from the CO2sys software indicate that these warming trends
363	influenced the pH values and were related to the changes of -0.0004 and -0.0010 yr ⁻¹ in the pH trends
364	in summer and winter, respectively (Fig. 7e-f and 10a-b). We estimated that the pH _{insitu} would change
365	from 8.0150 to 8.0147 in summer and from 8.2560 to 8.2565 in winter, for temperature changes from

366	25.00°C to 25.02°C, and from 10.00°C to 10.04°C, respectively, for a salinity of 34, DIC of 1900
367	millimole m^{-3} , and alkalinity of 2200 millimole m^{-3} . The differences between the pH_{insitu} and the
368	corresponding pH_{25} trends in summer (0.0004 yr ⁻¹) and winter (-0.0010 yr ⁻¹) can be partly explained
369	by the difference between the decrease in the pH trends in summer $(-0.0003 \text{ yr}^{-1})$ and winter $(-0.0005 \text{ yr}^{-1})$
370	yr ⁻¹) (Fig. 7e–f) arising from thermal effects.
371	
372	4.2.2 Regional differences in pH _{insitu} trends
373	We found regional differences in pH_{insitu} values (e.g. Fig. 6) and pH_{insitu} trends (Figs. 8–9). The
374	negative pH_{insitu} trends (acidification) were more significant in southwestern Japan than in northeastern
375	Japan, especially for the minimum pH_{insitu} data (Fig. 9 and Section 3.2). The JMA (2008, 2018)
376	reported that over the past 100 years, the increase in water temperature in western Japan was \sim 1.30°C
377	greater than that in northeastern Japan.
378	We used the CO2sys software (Lewis and Wallace 1998) to predict how pH_{insitu} would change under
379	a temperature difference of 0.01 $^{\circ}$ C yr ⁻¹ between the northeastern and southwestern areas, and found
380	that pH decreased by 0.0002 (0.0002) yr^{-1} when the temperature changed from 10.00°C to 10.01°C
381	(25.0°C to 25.01°C), assuming a salinity of 34, DIC of 1900 millimol/m ³ , and alkalinity of 2200
382	millimol/m ³ . The contrasting trends in the northeast and southwest can be also partly explained by the
383	difference in warming trends (process D in equation 2).
384	Regional differences in pH were observed in the northern Gulf of Mexico and the East China Sea

385	(Cai et al. 2011) at the basin scale. Yamamoto-Kawai et al. (2015) detected regional differences in the
386	aragonite saturation rate (Ω_{ar}) of an ocean acidification index, but not in pH _{insitu} , in Tokyo Bay. Cai et
387	al. (2011) reported that regional differences in pH_{insitu} observed in their surveys were caused by human-
388	related inputs of nutrients to coastal waters; i.e., eutrophication (represented by the DIC process in
389	equation 2). Sunda and Cai (2012) used biogeochemical simulations to examine the complex
390	interactions between acidification that resulted from respiratory CO2 inputs and from increasing
391	atmospheric CO_2 . With their model, which focused on coastal areas, they predicted that these CO_2
392	inputs caused pH_{insitu} values to decrease by between 0.1250 and 1.1000 units because of eutrophication.
393	Both Cai et al. (2011) and Sunda and Cai (2012) considered heterotrophic subsurface waters. Spatial
394	variations in nutrient loadings in autotrophic waters also cause pH_{insitu} trends to vary, although in the
395	opposite direction (Borges and Gypens 2010), and eutrophication can result in basification (Duarte et
396	al. 2013).
397	As well as the effect of changes in the disassociation constant, the summer $p\mathrm{H}_{\text{insitu}}$ is affected by

398 ocean uptake of CO₂ (process DIC; Bates et al. 2012; Bates 2014) through long-term changes in

biological activity (Cai et al. 2011; Sunda and Cai 2012; Duarte et al. 2013; Yamamoto-Kawai et al.

400 2015). The responses of pH_{insitu} to changes in marine productivity are, however, complicated.

401 Previous studies have reported that nutrient loadings in Japan have decreased over recent decades

402 (e.g., Yamamoto-Kawai et al. 2015; Kamohara et al. 2018; Nakai et al. 2018), with variable effects on

403 summer pH_{insitu} in coastal waters. TN was monitored for a shorter period than pH_{insitu} (1995 to 2009).

404	We assumed that the TN was mainly dissolved inorganic nitrogen, and determined the correlations
405	between TN and the minimum and maximum pH_{insitu} data (Fig. 14). There were significant negative
406	correlations between TN and minimum (–0.03) and maximum (–0.29) pH_{insitu} . These correlations
407	imply that the conditions in most of the monitoring areas of the WPCL programs were heterotrophic.
408	There is little evidence of basification, even in coastal waters, but the heterotrophic coastal waters
409	monitored by the WPCL programs might have been oligotrophic. While some sites might have been
410	dominated by heterotrophs, others might have been affected by autotrophs, causing the dominant
411	processes in the pH trends to vary between sites, depending on the area.
412	Nakai et al. (2018) reported that nutrient loadings have decreased in the most parts of the Seto Inland
413	Sea from 1981 to 2010, but several areas remain eutrophic. Because of geographical variations in
414	nutrient loadings and the uneven distribution of autotrophic and heterotrophic water areas, there are
415	significant spatial variations in pH trends in the Seto Inland Sea (Fig. 8). The pH trends in coastal areas
416	of western Kyushu, where the anthropogenic nutrient loadings are relatively low, therefore reflect the
417	decreases in nutrient discharges, resulting in variations between regions (e.g., Nakai et al. 2018;
418	Yamamoto and Hanazato 2015; Tsuchiya et al., 2018). Several cities in this area have introduced
419	advanced sewage treatment to prevent eutrophication in coastal waters (Nakai et al. 2018; Yamamoto
420	and Hanazato 2015).

421 Variations in coastal alkalinity along with salinity might be related to changes in land use and might
422 affect the trends (process Alk(S) in equation 2). Total alkalinity is not monitored as part of the WPCL

423	program and there are no sites in coastal areas of Japan with continuous data for alkalinity. Taguchi et
424	al. (2009) measured alkalinity in the surface waters of Ise, Tokyo, and Osaka bays between 2007 and
425	2009, and reported that total alkalinity was highly correlated with salinity in each bay. For a
426	temperature, salinity, dissolved carbon, and alkalinity of 25.00 $^\circ$ C, 35, 1900 millimol m ⁻³ , and 2300
427	millimol m^{-3} , respectively, pH_{insitu} (= pH_{25}) was estimated at 8.1416 using the CO2sys software (Lewis
428	and Wallace 1998). By changing the salinity and alkalinity to 34 and 2200 millimol m^{-3} , respectively,
429	pH_{insitu} (= pH_{25}) decreased by 0.0081 to 8.0150. This shows that pH could deviate significantly from
430	average trends if the inputs of alkaline compounds are changed; consequently, some of our pH trends
431	could have been affected by changing discharge from different land-use types.
432	Regional differences in pH _{insitu} trends in coastal waters might be caused by ocean pollution. The
433	speciation and bioavailability of heavy metals change in acidic waters, causing an increase in the
434	biotoxicity of the metals (Zeng et al. 2015; Lacoue-Labarthe et al. 2009; Pascal et al. 2010; Cambell
435	et al. 2014). The rates at which marine organisms photosynthesize and respire in ocean waters decrease
436	and increase, respectively, in water polluted with heavy metals and oils (process DIC in equation 2)
437	because of biotoxicity and eutrophication, thereby resulting in acidification (Hing et al. 2011; Huang
438	et al. 2011; Gilde and Pinckney 2012).
439	

440 5. Conclusions

441 We estimated the long-term trends in pH_{insitu} in Japanese coastal waters and examined how the

442	trends varied regionally. The long-term pH _{insitu} data show highly variable trends, although ocean
443	acidification has generally intensified in Japanese coastal waters. We found that the annual pH_{insitu}
444	minimum (in summer) and pH_{insitu} maximum (in winter) decreased at overall rates of -0.0014 and
445	-0.0024 yr ⁻¹ , respectively, in Japanese coastal waters, similar to the adjacent open ocean. The seasonal
446	differences in average pH trends might reflect differences in warming trends, and the regional
447	differences in pH trends are partly related to heterotrophic processes associated with nutrient loadings.
448	There were striking spatial variations in the pH_{insitu} trends. Correlations among the pH_{insitu} time series
449	at different sites revealed that the high variability in the pH_{insitu} trends was not caused by analytical
450	errors in the data but reflected the large spatial variability in the physical and chemical characteristics
451	of coastal environments, such as water temperature, nutrient loadings, and autotropic/heterotrophic
452	conditions. While there was a general tendency towards coastal acidification, there were positive trends
453	in pH_{insitu} at 25%–30% of the monitoring sites, indicating basification, which suggests that the coastal
454	environment might not be completely devastated by acidification. If we can manage the coastal
455	environment effectively (e.g., control nutrient loadings and autotropic/heterotrophic conditions), we
456	might be able to limit, or even reverse, acidification in coastal areas.

457

458 Acknowledgments

459 We thank the scientists, captain, officers, and personnel of the National Institute for Environmental

460 Studies, Regional Development Bureau of the Ministry of Land, Infrastructure, Transport and Tourism,

461 who contributed to this study. We acknowledge financial support from the Sasakawa Peace Foundation

462	of the Ocean Policy Research Institute. We also appreciate discussions with members of the
463	Environmental Variability Prediction and Application Research Group of the Japanese Agency for
464	Marine-Earth Science and Technology. Suggestions by two reviewers helped us to improve an earlier
465	version of the manuscript.
466	
467	References
468	Bates, N. R.: Interannual variability of the ocean CO ₂ sink in the subtropical gyre of the North Atlantic

469 Ocean over the last 2 decades, J. Geophys. Res. 112, C09013, doi:10.1029/2006JC003759, 2007.

470 Bates, N. R.: Multi-decadal uptake of carbon dioxide into subtropical mode waters of the North

471 Atlantic Ocean. Biogeosciences 9:2, 649–2, 659, http://dx.doi.org/10.5194/bg-9-2649-2012, 2012.

472 Bates, N. R., Astor, Y. M., Church, M. J., Currie, K., Dore, J. E., Gonzalez-Davila, M., Lorenzoni, L.,

473 Muller-Karger, F., Olafsson, J., and Santana-Casiano, J. M.: A time-series view of changing surface

474 ocean chemistry due to ocean uptake of anthropogenic CO₂ and ocean acidification, Oceanography,

475 27 (1):126–141, <u>http://dx.doi.org/10.5670/oceanog.2014.16, 2014</u>.

- 476 Bednarsek, N., Tarling, G. A., Bekker, D. C. E., Fielding, S., Jones, E. M., Venables, H. J., Ward, P.,
- 477 Kuzirian, A., Leze, B., Feely, R. A., and Murphy, E. J.: Extensive dissolution of live pteropods in
- the Southern Ocean, Nature Geoscience Letter, 5, 881–885, doi: 10.1038/NGEO1635, 2012.
- 479 Bednarsek, N., Feely, R. A., Reum, J. C. P., Peterson, B., Menkel, J., Alin, S. R., and Hales, B.:
- 480 Limacina helicina shell dissolution as an indicator of declining habitat suitability due to ocean
- 481 acidification in the California Current Ecosystem, Proc. R. Soc. B, 281 20140123, doi:

- 482 10.1098/rspb.2014.0123, 2014.
- 483 Borges, A. V. and Gypen, N.: Carbonate chemistry in the coastal zone responds more strongly to
- 484 eutrophication than to ocean acidification, Limnology and Oceanography 55: 346–353, 2010.
- 485 Montagna, R.: Description and quantification of pteropod shell dissolution: a sensitive bioindicator of
- 486 ocean acidification, Global Change Biology, 18, 2378–2388, doi: 10.1111/j.1365–2486.2012.02668,
- 487 2012.
- 488 Byrne, M., Lamare, M., Winter, D., Dworjanyn, S. A., and Uthicke, S.: The stunting effect of a high
- 489 CO₂ ocean on calcification and development in the urchin larvae, a synthesis from the tropics to the
- 490 poles, Philosophical Transactions of the Royal Society B, 368, 20120439. Doi:
- 491 10.1098/rstb.2012.0439, 2013.
- 492 Cai ,W., Hu, X., Huang, W., Murell, M. C., Lehrter, J. C., Lohrenz, S. E., Chou, W., Zhai, W.,
- 493 Hollibaugh, J. T., Wang, Y., Zhao, P., Guo, X., Gundersen, K., Dai, M., and Gong, G.: Acidification
- 494 of subsurface coastal waters enhanced by eutrophication, Nature Geoscience, 4, 766–700, 2011.
- 495 Campbell, A. L., Mangan, S., Ellis, R. P., and Lewis, C.: Ocean acidification increases copper toxicity
- 496 to the early life history stages of the polychaete arenicola marina in artificial seawater, Environ. Sci.
- 497 Technol. 48, 9745–9753, 2014.
- 498 Challener, R. C., Robbins, L. L., and McClintock, J. B.: Variability of the carbonate chemistry in a
- 499 shallow, seagrass-dominated ecosystem: imprications for ocean acidification experiments, Marine
- 500 and Freshwater Research, 67, 163-172. Doi:10.1071/MF14219, 2016.

- 501 DOE (United States Department of Energy): Handbook of methods for the analysis of the various
- 502 parameters of the carbon dioxide system in sea water; ver. 2, edited by A. G. Dickson and C. Goyet,
- 503 ORNL/CDIAC-74, 1994.
- 504 Dore, J. E., Lukus, R., Sadler, D. W., Church, M. J. and Karl. D. M.: Physical and biogeochemical
- 505 modulation of ocean acidification in the central North Pacific, Proc. Natl. Acad. Sci. 106, 12 235–12

506 240, 2009.

- 507 Doney, S.C., Fabry, V. J., Freely, A., and Kleypas, J. A.: Ocean acidification: The other CO₂ program,
- 508 Annu. Rev. Mar. Sci, 1, 169–192, 2009.
- 509 Duarte, C. M., Hendriks, I. E., Moore, T. S., Olsen, Y. S., Steckbauer, A., Ramajo, L., Carstensen, J.,
- 510 Trotter, J. A., and McCullouch, M.: Is ocean acidification an open ocean syndrome? Understanding
- anthropogenic impacts in seawater pH, Estuaries and Coasts 36, 221-236.doi:10.1007/s12237-013-
- 512 **9594-3**, 2013.
- 513 Frankignoulle, M., and Bouquegneau, J. M.: Daily and yearly variations of total inorganic carbon in a
- 514 productive coastal area, Estuarine, Coastal and Shelf Science 30, 79-89, 1990.
- 515 Gattuso, J. P., and Hansson, L.: Ocean acidification, Oxford Univ. Press, Oxford, 2011.
- 516 Glide, K., and Pinckney, J. L.: Sublethal effects of crude oil on the community structure of estuarine
- 517 phytokton, Estuar. Coasts 35, 853–861, 2012.
- 518 Gonzalez-Davila, M., Santana-Casiano, J. M., and Gonzalez-Davila, E. F.: Interannual variability of

- the upper ocean carbon cycle in the northeast Atlantic Ocean, Geophys. Res. Lett. 34, L07608,
- 520 doi:10.1029/2006GL028145, 2007.
- 521 Hagens, M., Slomp, C. P., Meysman, F. J. R., Seitaj, D., Harlay, J., Borges, A. V., and Middelburg, J.
- 522 J.: Biogeochemical processes and buffering capacity concurrently affect acidification in a seasonally
- 523 hypoxic coastal marine basin, Biogeoscience 12, 1561-1583. Doi:10.5194/bg-12-1561-2015, 2015.
- 524 Hing, L. S., Ford, T., Finch, P., Crane, M., and Morritt, D.: Laboratory stimulation of oil-spill effects
- on marine phytoplankton, Aquat. Toxicol 103, 32–37, 2011.
- 526 Huang, Y. J., Jiang, Z. G., Zeng, J. N., Chen, Q. Z., Zhao, Y. Q., Liao, Y. B., Shou, L., and Xu, X. Q.:
- 527 The chronic effects of oil pollution on marine phytoplankton in a subtropical bay, China. Environ.
- 528 Monit. Assess. 176, 517–530, 2011.
- 529 Intergovernmental Panel on Climate Change (IPCC): Climate Change 2013: The Physical Science
- 530 Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental
- 531 Panel on Climate Change, ed. Stocker, T. F., Qin, D., Plattner, Gian-Kasper., Tignor, M. M. B., Allen,
- 532 S. K., Boschung, J., Nauels, A., Zia Y., Bex, V., Midgley, P. M., 1-1535 pp. Cambridge,
- 533 UK: Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
- 534 Japanese Industrial Standard Z8802 : <u>http://kikakurui.com/z8/Z8802-2011-01.html (</u>in Japanese), 2011.
- 535 Japanese Meteorological Agency :
- 536 http://dl.ndl.go.jp/view/download/digidepo_3011050_po_synthesis.pdf?itemId=info%3Andljp%2F
- 537 pid%2F3011050&contentNo=1&alternativeNo=& lang=en, 2008.

538	Japanese	Meteorological	Agency	:
539	https://ww	w.data.jma.go.jp/kaiyou/data/shindan/a_1/ja	apan_warm/japan_warm.html (in Japane	ese),
540	2018.			
541	Kamohara, S	., Takasu, Y., Yuguchi, M., Mima, N., and	Yoshunari, A.: Nutrient decrease in Mike	awa
542	Bay, Bulleti	in of Aichi Fisheries Research Institute 23, 3	80-32. (in Japanese), 2018.	
543	Keeling, C. I	D., and Whorf, T. P.: Atmospheric CO ₂ con	centration-Manoa Loa Observatory, Haw	vaii,
544	1958-1997	(revised August 1998), ORNL NDP-001, O	ak Ridge Nathl. Lab. Oak Ridge, TN, 199	98.
545	Lacou-Labar	the, T., Martin, S., Oberhansli, F., Teys	sie, J. L., Jeffree, R., Gattuso, J. P.,	and
546	Bustamant	te, P.: Effects of increased pCO ₂ and temp	perature on tracer element (Ag, Cd and	Zn)
547	bioaccumu	alation in the eggs of the common cuttlefis	sh, Sepia officinalis. Biogeosciences 6, 1	1–3,
548	2009.			
549	Lemasson, A	. J., Fletcher, S., Hall-Spence, J. M., and Ki	nights, A. M.: Linking the biological imp	acts
550	of ocean acid	lification on oysters to changes in ecosystem	a services: A review, Journal of Experime	ntal
551	Marine Bio	logy and Ecology, 492, 49–62, 2017.		
552	Lewis, E., an	d Wallace, D. W. R.: Program Developed fo	or CO2 System Calculations. ORNL/CDL	AC-
553	105. Carbor	n Dioxide Information Analysis Center, Oak	Ridge National Laboratory, U.S. Departn	nent

- of Energy, Oak Ridge, Tennessee, 1998.
- 555 Luenberger, D. G.: Optimization by vector space methods, pp. 1-326, John Wiley & Sons, Inc., New
- 556 York, N.Y, 1969.

- 557 Lui, H., and Chen, A. C.: Reconciliation of pH₂₅ and pH_{insitu} acidification rates of the surface oceans:
- 558 A simple conversion using only in situ temperature, Limnology and Oceanography : methods, 15,
- 559 328-355, doi:1002/lom3.10170, 2017.
- 560 Midorikawa, T., Ishii, M., Sailto, S., Sasano, D., Kosugi, N., Motoi, T., Kamiya, H., Nakadate, A.,
- 561 Nemoto, K., and Inoue, H.: Decreasing pH trend estimated from 25-yr time series of carbonate
- 562 parameters in the western North Pacific, Tellus, 62B, 649-659, doi:
- 563 10.111/j.1600-0889.2010.00474.x, 2010.
- 564 Ministry of the Environment: <u>http://www.env.go.jp/hourei/05/000140.html</u> (in Japanese), 2018.
- 565 Nakai, S., Soga, Y., Sekito, S., Umehara, S., Okuda, T., Ohno, M., Nishijima, W., and Asaoka, S.:
- 566 Historical changes in primary production in the Seto Inland Sea, Japan, after implementing
- regulations to control the pollutant loads, Water Policy wp2018093. Doi:10.2166/wp.2018.093, 2018.
- 568 National Institute for Environmental Studies :
- 569 <u>https://www.nies.go.jp/igreen/explain/water/content_w.html</u> (in Japanese), 2018.
- 570 Olafsson, J., Olafsdottir, S. R., Benoit-Cattin, A., Danielsen, M., Arnarson, T. S., and Takahashi, T.:
- 571 Rate of Iceland Sea acidification from time series measurements, Biogeosciences 6:2, 661–2, 668,
- 572 <u>http://dx.doi.org/10.5194/bg-6-2661-2009, 2009.</u>
- 573 Pascal, P. Y., Fleeger, J. W., Galvez, F., and Carman, K. R.: The toxicological interaction between ocean
- acidity and metals in coastal meiobenthic copepods, Mar. Pollut. Bull, 60, 2201–2208, 2010.
- 575 Sarmiento, J. L., and Gruber, N.: Ocean Biogeochemical dynamics, pp. 1-503, Princeton Univ. Press,

- 576 Princeton, New Jersey; Oxfordshire, United Kingdom, 2006.
- 577 Sunda, W. G., and Cai, W. J.: Eutrophication induced CO₂-acidification of subsurface coastal waters:
- 578 interactive effects of temperature, salinity, and atmospheric pCO₂, Environ. Sci. Technol. 46,
- 579 10651 10659, 2012.
- 580 Taguchi, F., Fujiwara, T., Yamada, Y., Fujita, K., and Sugiyama, M.: Alkalinity in coastal seas around
- Japan, Bulletin on coastal oceanography, Vol.47, No.1, 71–75, 2009.
- 582 Yamamoto-Kawai, M., Kawamura, N., Ono, T., Kosugi, N., Kubo, A., Ishii, M., and Kanda, J.: Calcium
- 583 carbonate saturation and ocean acidification in Tokyo Bay, Japan, J. Oceanogr. 71:427–439, doi
- 584 10.1007/s10872-015-0302-8, 2015.
- 585 Tsuchiya, K., Ehara, M., Yasunaga, Y., Nakagawa, Y., Hirahara, M., Kishi, M., Mizubayashi, K.,
- 586 Kuwahara, V. S., and Toda, T.: Seasonal and Spatial Variation of Nutrients in the Coastal Waters
- 587 of the Northern Goto Islands, Japan, Bulletin on coastal oceanography, 55, 125-138. (in
- 588 *Japanese*), 2018.
- 589 Yamamoto, T., and Hanazato, T.: Eutrophication problems of oceans and lakes, -fishes cannot live in
- ⁵⁹⁰ clean water, pp. 1–208, ChijinShokan Co. Ltd, ISBN978-4-8052-0885-4, (in Japanese), 2015.
- 591 Yara, Y., Vogi, M., Fujii, M., Yamano, H., Hauri, C., Steinacher, M., Gruber, N. and Yamano, Y.: Ocean
- 592 acidification limits temperature-induced poleward expansion of coral habitats around Japan,
- 593 Biogeosciences, 9, 4955–4968, doi : 10.5194/bg-9-4955-2012, 2012.
- 594 Zeng, X., Chen, X., and Zhuang, J.: The positive relationship between ocean acidification and pollution,

- 595 Mar. Poll. Bull, 91, 14–21, 2015.
- 596 Wakita, M., Nagano, A., Fujiki, T., and Watanabe, S.: Slow acidification of the winter mixed layer in
- 597 the subarctic western North Pacific, J. Geophys. Res. Oceans, 122, 6923-6935,
- 598 doi:10.1002/2017JC013002, 2017.

599

600	Figure captions
601	
602	Fig. 1 Coastal maps and monitoring sites in Japan. Red points in (a) indicate the fixed sites (n = 1481)
603	monitored by the Regional Development Bureau of the Ministry of Land, Infrastructure, Transport,
604	and Tourism, and the Ministry of the Environment (Japan) under the WCPL monitoring program. (b)
605	Monitoring sites that met the strictest criterion ($n = 302$).
606	
607	Fig. 2 Distributions of the monthly number of data points (N) for (a) maximum and (b) minimum
608	temperatures collected in each prefecture from the 302 most reliable monitoring sites.
609	
610	Fig. 3 Examples of (a) acidification (Kahoku Coast in Ishikawa) and (b) basification (Funakoshi Bay
611	in Iwate) trends at monitoring sites. Red and blue colors indicate the annual minimum and maximum
612	pH _{insitu} data and their trends, respectively.
613	
614	Fig. 4 Correlations of water temperature and pH_{insitu} at adjacent monitoring sites in the same prefecture.
615	Thin lines denote significant correlations ($r = 0.12$, degrees of freedom = 283).
616	

- Fig. 5 Scatter plots of correlation coefficients for water temperature and pH_{insitu} at adjacent monitoring 617
- 618sites in the same prefecture. Fig. 5a shows the highest temperature and minimum pH_{insitu} data and Fig.

619	5b shows the	lowest temperature and	d maximum	pHinsitu da	ta.
-----	--------------	------------------------	-----------	-------------	-----

620

621	Fig. 6 Examples of time-series for annual minimum and maximum pH_{insitu} data at adjacent monitoring
622	sites close to the boundaries between (a) Osaka and Hyogo and (b) Kagawa and Ehime. Lines of the
623	same color indicate data collected at the same site. Site locations are included to the right of each
624	panel, with the text color corresponding to the colors in each panel.
625	
626	Fig. 7 Histogram of pH trends, represented by $\Delta p H_{insitu}$, showing the slopes of the linear regression
627	lines for the annual minimum (left) and maximum (right) pH_{insitu} data at each monitoring site. The
628	histograms in (a, b), (c, d), and (e, f) show three scenarios: (a, b) all 1481 available sites with
629	continuous records before quality control, (c, d) 1127 sites without outliers, and (e, f) 289 sites that
630	meet the strictest criterion.
631	
632	Fig. 8 Distributions of long-term trends in pH_{insitu} ($\Delta pH_{insitu}/yr$) in Japanese coastal waters. The colors
633	indicate the ranges of acidification (a, c) and basification (b, d). (a, b) and (c, d) are linked to the data
634	used in Figs. 7e and 7f, respectively.
635	

636 Fig. 9 (a-b, d-e, g-h, j-k) Average minimum and maximum pH_{insitu} trends ($\Delta pH_{insitu}/yr$) in each 637 prefecture. These figures show each side of the Pacific (a-b), the Seto Inland Sea (d-e), the East

638	China Sea (g–h), and the Japan Sea (j–k). The prefecture names are arranged vertically from eastern
639	(northern) to western (southern) areas. Black and red shading indicate one standard deviation from
640	the average. (c, f, i, l) Number of monitoring sites in each prefecture. The thin dashed line is the
641	threshold value of 17 (i.e., the average number of monitoring sites in all prefectures). The prefectures
642	that meet the threshold are indicated in purple. The figure is based on the results shown in Figs. 7 (e,
643	f) and 8.
644	
645	Fig. 10 Same as Fig. 7, but showing the pH_{25} trends at 289 sites (selected by quality control step 3).
646	The value of pH_{25} was estimated using the method of Lui and Chen (2017).
647	
648	Fig. 11 (a-b, d-e, g-h, j-k) Same as Fig. 9, but showing the average estimated minimum and
649	maximum pH_{25} trends ($\Delta pH_{25}/yr)$ for each prefecture. Red lines and points indicate the average
650	minimum and maximum pH_{insitu} trends shown in Fig. 9.
651	
652	Fig. 12 Average highest and lowest temperatures observed for the minimum and maximum pH_{insitu} data
653	for each prefecture. The blue and red lines and shading indicate the average and one standard
654	deviation from the average, respectively. The prefectures that met the threshold of 17 are shown in
655	purple, as in Figs. 9 (c-l) and 11 (c-l).
656	

657	Fig. 13 Same as Fig. 7, but showing the highest and lowest temperature trends at 289 sites (selected
658	by quality control step 3).
659	
660	Fig. 14 Correlation between trends in total nitrogen (TN) and trends in (a) minimum and (b) maximum
661	$pH_{\text{insitu}}.$ The correlation coefficients are -0.30 and -0.29 for the minimum and maximum $pH_{\text{insitu}},$
662	respectively (significance level of 0.05, $r = 0.128$; degrees of freedom = 236).
663	
664	Table 1 Number of samples (N) collected at each of the 1481 monitoring sites each year.
665	
666	Table 2 Average mutual correlation coefficients among water temperature and pH_{insitu} measurements at
667	adjacent monitoring sites in the same prefecture. The averages were calculated from the data for the
668	highest and lowest temperature, and minimum and maximum $p\mathrm{H}_{\text{insitu}}$ within 15 km for the three
669	criteria. We refined the sites using three quality control steps, yielding 1481 (step 1), 1127 (step 2),
670	and 302 (step 3) sites.
671	
672	Table 3 Average correlation coefficients of minimum and maximum pH_{insitu} trends with total inorganic
673	nitrogen (TN) trends. The degrees of freedom in steps 1 and 2 are the same values because TN data
674	are not necessarily measured at all pH_{insitu} monitoring sites and the sampling numbers of monitoring
675	sites for steps 1 and 2 are the same.

Fig. 1 Coastal maps and monitoring sites in Japan. Red points in (a) indicate the fixed sites (n = 1481) monitored by the Regional Development Bureau of the Ministry of Land, Infrastructure, Transport, and Tourism, and the Ministry of the Environment (Japan) under the WCPL monitoring program. (b) Monitoring sites that met the strictest criterion (n = 302).

Fig. 2 Distributions of the monthly number of data points (N) for (a) maximum and (b) minimum temperatures collected in each prefecture from the 302 most reliable monitoring sites.

Fig. 3 Examples of (a) acidification (Kahoku Coast in Ishikawa) and (b) basification (Funakoshi Bay in Iwate) trends at monitoring sites. Red and blue colors indicate the annual minimum and maximum pH_{insitu} data and their trends, respectively.

Fig. 4 Correlations of water temperature and pH_{insitu} at adjacent monitoring sites in the same prefecture. Thin lines denote significant correlations (r = 0.12, degrees of freedom = 283).

Fig. 5 Scatter plots of correlation coefficients for water temperature and pH_{insitu} at adjacent monitoring sites in the same prefecture. Fig. 5a is for the highest temperature and the minimum pH_{insitu} data and Fig. 5b for the lowest temperature and the maximum pH_{insitu} data, respectively.

Fig. 6 Examples of time-series for annual minimum and maximum pH_{insitu} data at adjacent monitoring sites close to the boundaries between (a) Osaka and Hyogo and (b) Kagawa and Ehime. Lines of the same color indicate data collected at the same site. Site locations are included to the right of each panel, with the text color corresponding to the colors in each panel.

Fig. 7 Histogram of pH trends, represented by ΔpH_{instu} , showing the slopes of the linear regression lines for the annual minimum (left) and maximum (right) pH_{instu} data at each monitoring site. The histograms in (a, b), (c, d), and (e, f) show three scenarios: (a, b) all 1481 available sites with continuous records before quality control, (c, d) 1127 sites without outliers, and (e, f) 289 sites that meet the strictest criterion.

Fig. 8 Distributions of long-term trends in pH_{insitu} (ΔpH_{insitu} /yr) in Japanese coastal waters. The colors indicate the ranges of acidification (a, c) and basification (b, d). (a, b) and (c, d) are linked to the data used in Figs. 7e and 7f, respectively.

Fig. 9 (a–b, d–e, g–h, j–k) Average minimum and maximum $pH_{institu}$ trends ($\Delta pH_{institu}/yr$) in each prefecture. These figures show each side of the Pacific (a–b), the Seto Inland Sea (d–e), the East China Sea (g–h), and the Japan Sea (j–k). The prefecture names are arranged vertically from eastern (northern) to western (southern) areas. Black and red shading indicate one standard deviation from the average. (c, f, i, l) Number of monitoring sites in each prefecture. The thin dashed line is the threshold value of 17 (i.e., the average number of monitoring sites in all prefectures). The prefectures that meet the threshold are indicated in purple. The figure is based on the results shown in Figs. 7 (e, f) and 8.

Fig. 10 Same as Fig. 7, but showing the pH_{25} trends at 289 sites (selected by quality control step 3). The value of pH_{25} was estimated using the method of Lui and Chen (2017).

Fig. 11 (a–b, d–e, g–h, j–k) Same as Fig. 9, but showing the average estimated minimum and maximum pH_{25} trends (ΔpH_{25} /yr) for each prefecture. Red lines and points indicate the average minimum and maximum $pH_{institu}$ trends shown in Fig. 9.

Fig. 12 Average highest and lowest temperatures observed for the minimum and maximum pH_{insitu} data for each prefecture. The blue and red lines and shading indicate the average and one standard deviation from the average, respectively. The prefectures that met the threshold of 17 are shown in purple, as in Figs. 9 (c-l) and 11 (c-l).

Fig. 13 Same as Fig. 7, but showing the highest and lowest temperature trends at 289 sites (selected by quality control step 3).

Fig. 14 Correlation between trends in total nitrogen (TN) and trends in (a) minimum and (b) maximum pH_{insitu} . The correlation coefficients are -0.30 and -0.29 for the minimum and maximum pH_{insitu} , respectively (significance level of 0.05, r = 0.128; degrees of freedom = 236).

			• • • •				•	•	
Year	$0 \leq N \leq 4$	4≦N<8	8≦N<12	$12 \leq N \leq 16$	16≦N<20	$20 \leq N \leq 24$	$24 \leq N \leq 28$	$28 \leq N \leq 32$	$32 \leq N \leq 40$
1978	43	391	83	303	87	15	176	9	4
1979	31	372	73	328	101	19	150	11	7
1980	32	363	88	324	101	15	192	12	5
1981	24	347	72	361	99	13	199	11	3
1982	25	350	74	364	93	9	206	11	4
1983	32	355	75	356	91	11	222	12	0
1984	28	362	74	355	96	10	211	11	3
1985	24	354	86	377	96	9	192	11	8
1986	25	361	81	334	98	8	235	11	9
1987	26	357	78	341	98	4	239	11	1
1988	25	366	74	356	82	6	236	11	2
1989	26	365	83	344	84	5	238	17	3
1990	24	377	76	347	83	1	238	14	5
1991	24	367	80	355	93	5	226	13	5
1992	24	367	79	352	95	1	230	16	0
1993	17	374	76	357	94	8	225	14	0
1994	17	376	85	347	102	24	208	14	3
1995	29	376	109	311	104	3	227	12	0
1996	19	419	80	307	104	4	226	14	1
1997	20	396	82	315	115	5	225	13	0
1998	16	389	103	325	99	0	225	12	0
1999	17	396	68	381	67	2	224	12	7
2000	17	389	82	376	72	1	231	6	2
2001	17	392	90	382	50	8	220	6	1
2002	17	368	102	392	49	1	229	7	0
2003	17	365	93	402	51	1	233	6	1
2004	17	370	84	400	50	1	240	5	2
2005	16	354	152	356	46	9	228	3	0
2006	16	370	134	345	50	0	244	5	3
2007	17	399	128	353	62	0	202	5	3
2008	17	402	128	350	64	0	211	5	1
2009	17	403	143	340	58	0	217	5	8

Table 1 Number of samples (N) collected at each of the 1481 monitoring sites each year.

Table 2 Average mutual correlation coefficients among water temperatrue and pH_{insitu} at adjacent monitoring sites in the same prefecture. The averages were calculated from the data for the highest and lowest temperature, and minimum and maximum pH_{insitu} within 15 km for the three criteria. We refined the sites using three quality control steps, yielding 1481 (step 1), 1127 (step 2), and 302 (step 3) sites.

Quality check procedue	highest temperature data	lowest temperature data	minimum pH _{insitu} data	maximum pH _{insitu} data
1	0.79	0.78	0.51	0.64
2	0.8	0.79	0.54	0.69
3	0.85	0.87	0.62	0.72

Table 3 Average correlation coefficients between minimum and maximu pHi_{nsitu} trends and total inorganic nitrogen (TN) ones, respectively. We evaluated this for the data after each quality check procedues. Degree of freedom in step 1 and 2 are same values, because TN data are not necessarily measured at the whole of pH_{insitu} monitoring sites. The sampling number of monitoring sites at step 1 and 2 were therefore the same number. Significant level, $\alpha = 0.05$ and degree of freedom are also represented.

Quality check procedue	Correlation between minimum Δ pHinsitu and Δ TN	Correlation between maximum Δ pHinsitu and ΔTN	Significant level of 0.05	Degree of freedom
1	-0.015	-0.29	0.08	622
2	-0.015	-0.29	0.08	622
3	-0.33	-0.35	0.14	215